DC FieldValueLanguage
dc.contributor.authorMoraga, Claudioen
dc.contributor.authorStanković, Radomiren
dc.contributor.authorAstola, Jaakkoen
dc.date.accessioned2020-05-01T20:29:06Z-
dc.date.available2020-05-01T20:29:06Z-
dc.date.issued2018-07-19en
dc.identifier.isbn978-1-538-64463-8en
dc.identifier.issn0195-623Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2004-
dc.description.abstractThe concept of rotation symmetric functions from the Boolean domain is extended to the multiple-valued (MV) domain. It is shown that symmetric functions are a subset of the rotation symmetric functions. Functions exhibiting these kinds of symmetry may be given a compact value vector representation. It is shown that the Reed-Muller-Fourier spectrum of a function preserves the kind of symmetry and therefore it may be given a compact vector representation of the same length as the compact value vector of the corresponding function. A method is presented for calculating the RMF spectrum of symmetric and rotation symmetric functions from their compact representations.en
dc.publisherIEEE-
dc.relation.ispartofProceedings of The International Symposium on Multiple-Valued Logicen
dc.subjectCompact representation | Reed Muller Fourier transform | Rotation symmetric MV functionsen
dc.titleOn the reed-muller-fourier spectrum of multiple-valued rotation symmetric functionsen
dc.typeConference Paperen
dc.relation.conference48th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2018; Johannes Kepler University of Linz; Austria; 16 May 2018 through 18 May 2018-
dc.identifier.doi10.1109/ISMVL.2018.00049en
dc.identifier.scopus2-s2.0-85050963825en
dc.relation.firstpage241en
dc.relation.lastpage246en
dc.relation.volume2018-Mayen
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 19, 2024

Page view(s)

10
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.