DC FieldValueLanguage
dc.contributor.authorRadmanović, Milošen
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:05Z-
dc.date.available2020-05-01T20:29:05Z-
dc.date.issued2018-07-19en
dc.identifier.isbn978-1-538-64463-8en
dc.identifier.issn0195-623Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2002-
dc.description.abstractSince standard benchmark functions for analysis of multiple-valued logic (MVL) designs are not widely available, benchmark functions for binary logic design are often used in this area after an appropriate encoding of function values and possibly padding with zeros. Such generated MVL benchmarks might not express inherent properties of MVL functions. Synthetic benchmark MVL functions are an alternative and their construction is an interesting problem. Various restrictions imposed on the structure of decision diagrams, i.e., distribution of nodes and their interconnections; lead to functions expressing various properties. Based on this observation, we propose a method for generating synthetic MVL benchmark functions derived from randomly generated multiple-valued decision diagrams (MDD) under certain structural restrictions. We consider four different structural parameters: The number of levels, the maximal size, i.e., the total number of nodes, the maximal width, and the average edge length. Experimental results are provided to illustrate the efficiency of the proposed method.en
dc.publisherIEEE-
dc.relation.ispartofProceedings of The International Symposium on Multiple-Valued Logicen
dc.subjectMDD | Multiple-valued logic | Random graphs | Synthetic benchmarksen
dc.titleGenerating synthetic MVL benchmarks from random MDDs under restrictionsen
dc.typeConference Paperen
dc.relation.conference48th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2018; Johannes Kepler University of Linz; Austria; 16 May 2018 through 18 May 2018-
dc.identifier.doi10.1109/ISMVL.2018.00037en
dc.identifier.scopus2-s2.0-85050961812en
dc.relation.firstpage168en
dc.relation.lastpage173en
dc.relation.volume2018-Mayen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

Page view(s)

11
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.