DC FieldValueLanguage
dc.contributor.authorAcketa, Draganen
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:29:04Z-
dc.date.available2020-05-01T20:29:04Z-
dc.date.issued1991-05-17en
dc.identifier.issn0020-0190en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1983-
dc.description.abstractA relationship between linear partitions and minimal pairs of a finite point set in the plane was established in [2]. This relationship is used here for counting the number of linear partitions of the set of points of the (m, n)-grid, a rectangular part of the infinite grid. In order to optimize this counting, an O(mn) algorithm is introduced for traversing all those pairs (i, j) of mutually simple natural numbers i and j, such that 1 ≤i≤m, 1≤j≤n.en
dc.publisherElsevier-
dc.relation.ispartofInformation Processing Lettersen
dc.subject(m,n)-grids in the plane | computational complexity | Computational geometry | linear partitions | point setsen
dc.titleOn the number of linear partitions of the (m, n)-griden
dc.typeArticleen
dc.identifier.doi10.1016/0020-0190(91)90240-Ien
dc.identifier.scopus2-s2.0-0026157351en
dc.relation.firstpage163en
dc.relation.lastpage168en
dc.relation.issue3en
dc.relation.volume38en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 19, 2024

Page view(s)

24
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.