DC Field | Value | Language |
---|---|---|
dc.contributor.author | Acketa, Dragan | en |
dc.contributor.author | Žunić, Joviša | en |
dc.date.accessioned | 2020-05-01T20:29:03Z | - |
dc.date.available | 2020-05-01T20:29:03Z | - |
dc.date.issued | 1995-01-01 | en |
dc.identifier.issn | 0097-3165 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1974 | - |
dc.description.abstract | Let e(m) denote the maximal number of edges of a convex digital polygon included into an m × m square area of lattice points and let s(n) denote the minimal (side) size of a square in which a convex digital polygon with n edges can be included. We prove that. e(m) = 12 (4π2) 1 3m 2 3+O(m 1 3log m). s(n) = 2τ 12 3 2n 3 2+O(nlogn). | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Journal of Combinatorial Theory, Series A | en |
dc.title | On the maximal number of edges of convex digital polygons included into an m × m-grid | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/0097-3165(95)90058-6 | en |
dc.identifier.scopus | 2-s2.0-0000452018 | en |
dc.relation.firstpage | 358 | en |
dc.relation.lastpage | 368 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 69 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
44
checked on Apr 3, 2025
Page view(s)
18
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.