DC Field | Value | Language |
---|---|---|
dc.contributor.author | Žunić, Joviša | en |
dc.contributor.author | Koplowitz, Jack | en |
dc.date.accessioned | 2020-05-01T20:29:03Z | - |
dc.date.available | 2020-05-01T20:29:03Z | - |
dc.date.issued | 1995-01-01 | en |
dc.identifier.isbn | 978-0-819-41691-6 | en |
dc.identifier.issn | 0277-786X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1973 | - |
dc.description.abstract | The concept of noisy straight line introduced by Melter and Rosenfeld is generalized and applied for digital parabolas. It is proved that digital parabola segments and their least square parabola fits are in one-to-one correspondence. This enables a (first known) vector space representation of a digital parabola segment. One of such representations is (x1, n, a, b, c) where x1 and n are the x-coordinate of the left endpoint and the number of digital points, respectively, while a, b, and c are the coefficients of the least square parabola fit Y = aX2 + bX + c for the given parabola segment. | en |
dc.publisher | SPIE | - |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering | en |
dc.title | Representation of digital parabolas by least-square fit | en |
dc.type | Conference Paper | en |
dc.identifier.doi | 10.1117/12.198619 | - |
dc.identifier.scopus | 2-s2.0-0029227156 | en |
dc.relation.firstpage | 71 | en |
dc.relation.lastpage | 78 | en |
dc.relation.volume | 2356 | en |
item.grantfulltext | none | - |
item.openairetype | Conference Paper | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
4
checked on Dec 4, 2024
Page view(s)
18
checked on Dec 4, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.