DC FieldValueLanguage
dc.contributor.authorŽunić, Jovišaen
dc.contributor.authorAcketa, Draganen
dc.date.accessioned2020-05-01T20:29:03Z-
dc.date.available2020-05-01T20:29:03Z-
dc.date.issued1996-01-01en
dc.identifier.isbn978-3-540-62005-1en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1970-
dc.description.abstractIt is proved that digital polynomial segments and their least squares polynomial fits are in one-to-one correspondence. This enables an efficient representation of digital polynomial segments by n+3 parameters, under the condition that an upper bound, say n, for the degrees of the digitized polynomials is assumed. One of such representations is (x 1, m, an, an−1,…, a 0), where x 1 and m are the x-coordinate of the left endpoint and the number of digital points, respectively, while a n, a n−1,..., a 0 are the coefficients of the least squares polynomial fit Y=a nXn+an− 1Xn−1+ ...+a0, for a given digital polynomial segment.en
dc.publisherSpringer Link-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectCoding | Computer vision | Digital polynomial segment | Image processing | Least squares fittingen
dc.titleLeast squares fitting of digital polynomial segmentsen
dc.typeArticleen
dc.relation.conference6th International Workshop on Discrete Geometry for Computer Imagery, DGCI 1996; Lyon; France; 13 November 1996 through 15 November 1996-
dc.identifier.doi10.1007/3-540-62005-2_2-
dc.identifier.scopus2-s2.0-84948951232en
dc.relation.firstpage17en
dc.relation.lastpage23en
dc.relation.volume1176en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 19, 2024

Page view(s)

9
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.