DC Field | Value | Language |
---|---|---|
dc.contributor.author | Žunić, Joviša | en |
dc.contributor.author | Acketa, Dragan | en |
dc.date.accessioned | 2020-05-01T20:29:03Z | - |
dc.date.available | 2020-05-01T20:29:03Z | - |
dc.date.issued | 1996-01-01 | en |
dc.identifier.isbn | 978-3-540-62005-1 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1970 | - |
dc.description.abstract | It is proved that digital polynomial segments and their least squares polynomial fits are in one-to-one correspondence. This enables an efficient representation of digital polynomial segments by n+3 parameters, under the condition that an upper bound, say n, for the degrees of the digitized polynomials is assumed. One of such representations is (x 1, m, an, an−1,…, a 0), where x 1 and m are the x-coordinate of the left endpoint and the number of digital points, respectively, while a n, a n−1,..., a 0 are the coefficients of the least squares polynomial fit Y=a nXn+an− 1Xn−1+ ...+a0, for a given digital polynomial segment. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | Coding | Computer vision | Digital polynomial segment | Image processing | Least squares fitting | en |
dc.title | Least squares fitting of digital polynomial segments | en |
dc.type | Article | en |
dc.relation.conference | 6th International Workshop on Discrete Geometry for Computer Imagery, DGCI 1996; Lyon; France; 13 November 1996 through 15 November 1996 | - |
dc.identifier.doi | 10.1007/3-540-62005-2_2 | - |
dc.identifier.scopus | 2-s2.0-84948951232 | en |
dc.relation.firstpage | 17 | en |
dc.relation.lastpage | 23 | en |
dc.relation.volume | 1176 | en |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
1
checked on Nov 19, 2024
Page view(s)
9
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.