DC Field | Value | Language |
---|---|---|
dc.contributor.author | Žunić, Joviša | en |
dc.date.accessioned | 2020-05-01T20:29:02Z | - |
dc.date.available | 2020-05-01T20:29:02Z | - |
dc.date.issued | 1996-08-01 | en |
dc.identifier.issn | 0167-8655 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1968 | - |
dc.description.abstract | It is proved that digital hyperbola segments and their least squares hyperbola fits are in one-to-one correspondence. This enables a constant space representation of a digital hyperbola segment inscribed into the integer grid. Such a representation is (x 1 , n, a, b), where x 1 is the x-coordinate of the left endpoint of the digital hyperbola segment, n is the number of its integer points , while a and b are the coefficients of the least squares hyperbola fit Y = 1/x a + b of the given digital hyperbola segment. An O(n max{log n, log x 1 }) algorithm for obtaining a digital hyperbola segment from its least squares hyperbola fit is described. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Pattern Recognition Letters | en |
dc.subject | Digital geometry | Digital hyperbola segment | Image processing | Least squares fitting | en |
dc.title | A representation of digital hyperbolas y = 1/x α + β | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/0167-8655(96)00059-1 | en |
dc.identifier.scopus | 2-s2.0-0030212352 | en |
dc.relation.firstpage | 975 | en |
dc.relation.lastpage | 983 | en |
dc.relation.issue | 9 | en |
dc.relation.volume | 17 | en |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
2
checked on Nov 19, 2024
Page view(s)
26
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.