DC FieldValueLanguage
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:29:01Z-
dc.date.available2020-05-01T20:29:01Z-
dc.date.issued2002-01-01en
dc.identifier.isbn978-3-540-43380-5en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1954-
dc.description.abstractFor a given real triangle T its discretization on a discrete point set S consists of points from S which fall into T. If the number of such points is finite, the obtained discretization of T will be called discrete triangle. In this paper we show that the discrete moments having the order up to 3 characterize uniquely the corresponding discrete triangle if the discretizationing set S is fixed. Of a particular interest is the case when S is the integer grid, i.e., S = Z2. Then the discretization of a triangle T is called digital triangle. It turns out that the proposed characterization preserves a coding of digital triangles from an integer grid of a given size, say m × m within an O(logm) amount of memory space per coded digital triangle. That is the theoretical minimum.en
dc.publisherSpringer Link-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectCoding | Digital shape | Digital triangle | Momentsen
dc.titleOn characterization of discrete triangles by discrete momentsen
dc.typeArticleen
dc.relation.conference10th International Conference on Discrete Geometry for Computer Imagery, DGCI 2002; Bordeaux; France; 3 April 2002 through 5 April 2002-
dc.identifier.doi10.1007/3-540-45986-3_21-
dc.identifier.scopus2-s2.0-84958614508en
dc.relation.firstpage232en
dc.relation.lastpage243en
dc.relation.volume2301en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

Page view(s)

13
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.