DC FieldValueLanguage
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:29:01Z-
dc.date.available2020-05-01T20:29:01Z-
dc.date.issued2002-12-28en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1952-
dc.description.abstractThis paper expresses the minimal possible lp-perimeter of a convex lattice polygon with respect to its number of vertices, where p is an arbitrary integer or p = ∞. It will be shown that such a number, denoted by sp(n), has n3/2 as the order of magnitude for any choice of p. Moreover, sp(n) = 2π/√54Apn3/2 + (n), where n is the number of vertices, Ap equals the area of planar shape \x\p + \y\p < 1, and p is an integer greater than 1. A consequence of the previous result is the solution of the inverse problem. It is shown that Np(s)=33√Ap/3√2π2s2/3 + (s1/3) equals the maximal possible number of vertices of a convex lattice polygon whose lp-perimeter is equal to s. The latter result in a particular case p=2 follows from a well known Jarnik's result. The method used cannot be applied directly to the cases p = 1 and ∞. A slight modification is necessary. In the obtained results the leading terms are in accordance with the above formulas (A1 =2 and A∞ =4), while the rest terms in the expressions for sp(n) and Np(s) are replaced with (n log n) and (s1/3 logs), respectively.en
dc.publisherElsevier-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectCombinatorial optimization | Convex lattice polygonen
dc.titleExtremal problems on convex lattice polygons in sense of lp-metricsen
dc.typeArticleen
dc.identifier.doi10.1016/S0012-365X(02)00384-9en
dc.identifier.scopus2-s2.0-31244438236en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage237en
dc.relation.lastpage250en
dc.relation.issue1-3en
dc.relation.volume259en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 19, 2024

Page view(s)

20
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.