DC FieldValueLanguage
dc.contributor.authorNgom, Aliouneen
dc.contributor.authorStojmenović, Ivanen
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:29:00Z-
dc.date.available2020-05-01T20:29:00Z-
dc.date.issued2003-05-01en
dc.identifier.issn1045-9227en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1948-
dc.description.abstractWe introduce the concept of multilinear partition of a point set V ⊂ Rn and the concept of multilinear separability of a function f : V → K = {0,..., k-1}. Based on well-known relationships between linear partitions and minimal pairs, we derive formulae for the number of multilinear partitions of a point set in general position and of the set K2. The (n, k, s)-perceptrons partition the input space V into s + 1 regions with s parallel hyperplanes. We obtain results on the capacity of a single (n, k, s)-perceptron, respectively, for V ⊂ Rn in general position and for V = K2. Finally, we describe a fast polynomial-time algorithm for counting the multilinear partitions of K2.en
dc.publisherIEEE-
dc.relationNSERC, Grants RGPIN22811700 and OGPIN007-
dc.relation.ispartofIEEE Transactions on Neural Networksen
dc.subject(k, k)-grid | Complexity | Farey sequence | General position | k-valued s-threshold perceptron | Minimal pair | Multiple-valued logic | Partition | Separabilityen
dc.titleOn the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptronsen
dc.typeArticleen
dc.identifier.doi10.1109/TNN.2003.810598en
dc.identifier.scopus2-s2.0-0037507305en
dc.relation.firstpage469en
dc.relation.lastpage477en
dc.relation.issue3en
dc.relation.volume14en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 23, 2024

Page view(s)

27
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.