DC Field | Value | Language |
---|---|---|
dc.contributor.author | Žunić, Joviša | en |
dc.date.accessioned | 2020-05-01T20:29:00Z | - |
dc.date.available | 2020-05-01T20:29:00Z | - |
dc.date.issued | 2003-12-01 | en |
dc.identifier.isbn | 978-3-540-20590-6 | - |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1946 | - |
dc.description.abstract | For a given planar region P its discretization on a discrete planar point set S consists of the points from S which fall into P. If P is bounded with a convex polygon having n vertices and the number of points from P ∩ S is finite, the obtained discretization of P will be called discrete convex n-gon. In this paper we show that discrete moments having the order up to n characterize uniquely the corresponding discrete convex n-gon if the discretizing set S is fixed. In this way, as an example, the matching of discrete convex n-gons can be done by comparing 1/2 · (n + 1) · (n + 2) discrete moments what can be much efficient than the comparison "point-by-point" since a digital convex n-gon can consist of an arbitrary large number of points. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | Coding | Discrete shape | Moments | Pattern matching | en |
dc.title | A characterization of discretized polygonal convex regions by discrete moments | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/978-3-540-24586-5_65 | - |
dc.identifier.scopus | 2-s2.0-35248860746 | en |
dc.relation.firstpage | 529 | en |
dc.relation.lastpage | 536 | en |
dc.relation.volume | 2905 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
2
checked on Nov 19, 2024
Page view(s)
15
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.