DC Field | Value | Language |
---|---|---|
dc.contributor.author | Žunić, Joviša | en |
dc.date.accessioned | 2020-05-01T20:29:00Z | - |
dc.date.available | 2020-05-01T20:29:00Z | - |
dc.date.issued | 2004-11-01 | en |
dc.identifier.issn | 0924-9907 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1942 | - |
dc.description.abstract | A digital disc is defined as the set of all integer points inside of a given real disc. In this paper we show that there are no more than n 2 + O(n 265/146. (log n) 315/146) different (up to translations) digital discs consisting of n points. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Journal of Mathematical Imaging and Vision | en |
dc.subject | Digital disc | Enumerating | Moments | Shapes | en |
dc.title | On the number of digital discs | en |
dc.type | Article | en |
dc.identifier.doi | 10.1023/B:JMIV.0000043736.15525.ed | en |
dc.identifier.scopus | 2-s2.0-5444273585 | en |
dc.relation.firstpage | 199 | en |
dc.relation.lastpage | 204 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 21 | en |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-1271-4153 | - |
SCOPUSTM
Citations
8
checked on Nov 24, 2024
Page view(s)
10
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.