DC FieldValueLanguage
dc.contributor.authorGhilezan, Silviaen
dc.contributor.authorPantović, Jovankaen
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:28:58Z-
dc.date.available2020-05-01T20:28:58Z-
dc.date.issued2007-09-01en
dc.identifier.issn1045-9227en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1927-
dc.description.abstractThis paper deals with partitions of a discrete set S of points in a d-dimensional space, by h parallel hyperplanes. Such partitions are in a direct correspondence with multilinear threshold functions which appear in the theory of neural networks and multivalued logic. The characterization (encoding) problem is studied. We show that a unique characterization (encoding) of such multilinear partitions of S = {0, 1,..., m -1}d is possible within O(h · d2 · log m) bit rate per encoded partition. The proposed characterization (code) consists of (d+1) · (h+1) discrete moments having the order no bigger than 1. The obtained bit rate is evaluated depending on the mutual relations between h; d, and m. The optimality is reached in some cases.en
dc.publisherIEEE-
dc.relation.ispartofIEEE Transactions on Neural Networksen
dc.subjectDiscrete moments | Encoding | Multilevel threshold function | Multilinear partitions | Neural networks | Storage complexityen
dc.titleSeparating points by parallel hyperplanes-characterization problemen
dc.typeArticleen
dc.identifier.doi10.1109/TNN.2007.891678en
dc.identifier.pmid18220185en
dc.identifier.scopus2-s2.0-34548609623en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1356en
dc.relation.lastpage1363en
dc.relation.issue5en
dc.relation.volume18en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2253-8285-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 23, 2024

Page view(s)

22
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.