DC FieldValueLanguage
dc.contributor.authorDražić, Slobodanen
dc.contributor.authorRalević, Nebojšaen
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:28:57Z-
dc.date.available2020-05-01T20:28:57Z-
dc.date.issued2010-10-01en
dc.identifier.issn0898-1221en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1914-
dc.description.abstractLet S be a shape with a polygonal boundary. We show that the boundary of the maximally elongated rectangle R(S) which encases the shape S contains at least one edge of the convex hull of S. Such a nice property enables a computationally efficient construction of R(S). In addition, we define the elongation of a given shape S as the ratio of the length of R(S) (determined by the longer edge of R(S)) and the width of R(S) (determined by the shorter edge of R(S)) and show that a so defined shape elongation measure has several desirable properties. Several examples are given in order to illustrate the behavior of the new elongation measure. As a by-product, of the method developed here, we obtain a new method for the computation of the shape orientation, where the orientation of a given shape S is defined by the direction of the longer edge of R(S).en
dc.publisherElsevier-
dc.relationSerbian Ministry of Science and Technology, grant ON144018-
dc.relation.ispartofComputers and Mathematics with Applicationsen
dc.subjectComputational geometry | Elongation | Encasing rectangle | Image processing | Shapeen
dc.titleShape elongation from optimal encasing rectanglesen
dc.typeArticleen
dc.identifier.doi10.1016/j.camwa.2010.07.043en
dc.identifier.scopus2-s2.0-77957898437en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2035en
dc.relation.lastpage2042en
dc.relation.issue7en
dc.relation.volume60en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 19, 2024

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.