DC FieldValueLanguage
dc.contributor.authorHuxley, Martinen
dc.contributor.authorŽunić, Jovišaen
dc.date.accessioned2020-05-01T20:28:57Z-
dc.date.available2020-05-01T20:28:57Z-
dc.date.issued2016-11-01en
dc.identifier.issn0924-9907en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1911-
dc.description.abstractConfigurations of integer lattice points inside a closed curve are a permanent topic in different research areas: from number theory to digital image analysis. This paper deals with the digital N-discs—the sets consisting of N integer lattice points which fall inside a circle. A digital N-disc corresponds to a digital image of a real circular discs, which consists of N pixels. We show that, for a large positive integer N, the average number of digital N-discs is asymptotic to 2N when N runs through a set of intervals, whose length is upper bounded by N47 / 58. In addition, we show that 2N is the best possible asymptotic estimate (the error term is ignored), for the number of digital N-discs. Such an asymptotic estimate is reached for almost all digital N-discs, for N in an interval, of the length N47 / 58. This improves result of Huxley and Žunić (IEEE Trans Pattern Anal Mach Intell 29:159–161, 2007), where an O(N) upper bound, for the number of digital N-discs, has been proven.en
dc.publisherSpringer Link-
dc.relation.ispartofJournal of Mathematical Imaging and Visionen
dc.subjectDigital disc | Digital geometry | Image processingen
dc.titleThe Number of Different Digital N-Discsen
dc.typeArticleen
dc.identifier.doi10.1007/s10851-016-0643-yen
dc.identifier.scopus2-s2.0-84960101008en
dc.relation.firstpage403en
dc.relation.lastpage408en
dc.relation.issue3en
dc.relation.volume56en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 20, 2024

Page view(s)

19
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.