DC FieldValueLanguage
dc.contributor.authorChallamel, Noëlen
dc.contributor.authorZorica, Dušanen
dc.contributor.authorAtanacković, Teodoren
dc.contributor.authorSpasić, Draganen
dc.date.accessioned2020-05-01T20:14:05Z-
dc.date.available2020-05-01T20:14:05Z-
dc.date.issued2013-03-01en
dc.identifier.issn1631-0721en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1889-
dc.description.abstractA fractional nonlocal elasticity model is presented in this Note. This model can be understood as a possible generalization of Eringen's nonlocal elastic model, with a free non-integer derivative in the stress-strain fractional order differential equation. This model only contains a single length scale and the fractional derivative order as parameters. The kernel of this integral-based nonlocal model is explicitly given for various fractional derivative orders. The dynamical properties of this new model are investigated for a one-dimensional problem. It is possible to obtain an analytical dispersive equation for the axial wave problem, which is parameterized by the fractional derivative order. The fractional derivative order of this generalized fractional Eringen's law is then calibrated with the dispersive wave properties of the Born-Kármán model of lattice dynamics and appears to be greater than the one of the usual Eringen's model. An excellent matching of the dispersive curve of the Born-Kármán model of lattice dynamics is obtained with such generalized integral-based nonlocal model.en
dc.publisherElsevier-
dc.relationViscoelasticity of fractional type and shape optimization in a theory of rods-
dc.relationMechanics of nonlinear and dissipative systems - contemporary models, analysis and applications-
dc.relationSecretariat for Science of Vojvodina, Grant 114-451-2167-
dc.relationEuropean Community’s Seventh Framework Programme (FP7/2007–2013), Grant No. PIEF-GA-2010-271610-
dc.relation.ispartofComptes Rendus - Mecaniqueen
dc.subjectBorn-Kármán model | Dispersive properties | Eringen model | Fractional derivative | Heterogeneous material | Nanostructures | Nonlocal elasticity | Scale effects | Wave propagation | Wavesen
dc.titleOn the fractional generalization of Eringen's nonlocal elasticity for wave propagationen
dc.typeArticleen
dc.identifier.doi10.1016/j.crme.2012.11.013en
dc.identifier.scopus2-s2.0-84875226581en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage298en
dc.relation.lastpage303en
dc.relation.issue3en
dc.relation.volume341en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174005e.php-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174005-
crisitem.author.orcid0000-0002-9117-8589-
Show simple item record

SCOPUSTM   
Citations

61
checked on Dec 26, 2024

Page view(s)

24
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.