DC Field | Value | Language |
---|---|---|
dc.contributor.author | Challamel, Noël | en |
dc.contributor.author | Zorica, Dušan | en |
dc.contributor.author | Atanacković, Teodor | en |
dc.contributor.author | Spasić, Dragan | en |
dc.date.accessioned | 2020-05-01T20:14:05Z | - |
dc.date.available | 2020-05-01T20:14:05Z | - |
dc.date.issued | 2013-03-01 | en |
dc.identifier.issn | 1631-0721 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1889 | - |
dc.description.abstract | A fractional nonlocal elasticity model is presented in this Note. This model can be understood as a possible generalization of Eringen's nonlocal elastic model, with a free non-integer derivative in the stress-strain fractional order differential equation. This model only contains a single length scale and the fractional derivative order as parameters. The kernel of this integral-based nonlocal model is explicitly given for various fractional derivative orders. The dynamical properties of this new model are investigated for a one-dimensional problem. It is possible to obtain an analytical dispersive equation for the axial wave problem, which is parameterized by the fractional derivative order. The fractional derivative order of this generalized fractional Eringen's law is then calibrated with the dispersive wave properties of the Born-Kármán model of lattice dynamics and appears to be greater than the one of the usual Eringen's model. An excellent matching of the dispersive curve of the Born-Kármán model of lattice dynamics is obtained with such generalized integral-based nonlocal model. | en |
dc.publisher | Elsevier | - |
dc.relation | Viscoelasticity of fractional type and shape optimization in a theory of rods | - |
dc.relation | Mechanics of nonlinear and dissipative systems - contemporary models, analysis and applications | - |
dc.relation | Secretariat for Science of Vojvodina, Grant 114-451-2167 | - |
dc.relation | European Community’s Seventh Framework Programme (FP7/2007–2013), Grant No. PIEF-GA-2010-271610 | - |
dc.relation.ispartof | Comptes Rendus - Mecanique | en |
dc.subject | Born-Kármán model | Dispersive properties | Eringen model | Fractional derivative | Heterogeneous material | Nanostructures | Nonlocal elasticity | Scale effects | Wave propagation | Waves | en |
dc.title | On the fractional generalization of Eringen's nonlocal elasticity for wave propagation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.crme.2012.11.013 | en |
dc.identifier.scopus | 2-s2.0-84875226581 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 298 | en |
dc.relation.lastpage | 303 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 341 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.project.projectURL | http://www.mi.sanu.ac.rs/novi_sajt/research/projects/174005e.php | - |
crisitem.project.fundingProgram | Basic Research (BR or ON) | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174005 | - |
crisitem.author.orcid | 0000-0002-9117-8589 | - |
SCOPUSTM
Citations
61
checked on Dec 26, 2024
Page view(s)
24
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.