DC FieldValueLanguage
dc.contributor.authorŽeli, Veliboren
dc.contributor.authorZorica, Dušanen
dc.date.accessioned2020-05-01T20:14:02Z-
dc.date.available2020-05-01T20:14:02Z-
dc.date.issued2018-02-15en
dc.identifier.issn0378-4371en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1865-
dc.description.abstractGeneralization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams–Bashforth and Grünwald–Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.en
dc.publisherElsevier-
dc.relationViscoelasticity of fractional type and shape optimization in a theory of rods-
dc.relationProvincial Government of Vojvodina, Grant 114-451-2098-
dc.relation.ispartofPhysica A: Statistical Mechanics and its Applicationsen
dc.subjectCattaneo type heat conduction law | Finite differences | Fractional distributed-order constitutive equation | Integral transformsen
dc.titleAnalytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction lawen
dc.typeArticleen
dc.identifier.doi10.1016/j.physa.2017.11.150en
dc.identifier.scopus2-s2.0-85036553223en
dc.relation.firstpage2316en
dc.relation.lastpage2335en
dc.relation.volume492en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174005e.php-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174005-
crisitem.author.orcid0000-0002-9117-8589-
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 24, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.