DC FieldValueLanguage
dc.contributor.authorVučković, Bojanen
dc.date.accessioned2020-05-01T20:14:01Z-
dc.date.available2020-05-01T20:14:01Z-
dc.date.issued2017-12-01en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1854-
dc.description.abstractA proper edge coloring is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The minimum number of colors needed for a neighbor-distinguishing edge coloring is the neighbor-distinguishing index, denoted by χa′(G). A graph is normal if it contains no isolated edges. Let G be a normal graph, and let Δ(G) and χ′(G) denote the maximum degree and the chromatic index of G, respectively. We modify the previously known techniques of edge-partitioning to prove that χa′(G)≤2χ′(G), which implies that χa′(G)≤2Δ(G)+2. This improves the result in Wang et al. (2015), which states that χa′(G)≤[Formula presented]Δ(G) for any normal graph. We also prove that χa′(G)≤2Δ(G) when Δ(G)=2k, k is an integer with k≥2.en
dc.publisherElsevier-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectEdge-partition | Maximum degree | Neighbor-distinguishing edge coloringen
dc.titleEdge-partitions of graphs and their neighbor-distinguishing indexen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2017.07.005en
dc.identifier.scopus2-s2.0-85026557303en
dc.relation.firstpage3092en
dc.relation.lastpage3096en
dc.relation.issue12en
dc.relation.volume340en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

14
checked on Jul 14, 2024

Page view(s)

34
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.