DC FieldValueLanguage
dc.contributor.authorBrimberg, Jacken
dc.contributor.authorUrošević, Draganen
dc.contributor.authorMladenović, Nenaden
dc.date.accessioned2020-05-01T20:13:57Z-
dc.date.available2020-05-01T20:13:57Z-
dc.date.issued2006-05-16en
dc.identifier.issn0377-2217en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1808-
dc.description.abstractThis paper presents some new heuristics based on variable neighborhood search to solve the vertex weighted k-cardinality tree problem. An efficient local search procedure is also developed for use within these heuristics. Our computational results demonstrate that the new heuristics substantially outperform the state-of-the-art methodologies, including a tabu search and genetic algorithm recently proposed in the literature. We also show that a decomposition approach is best for larger problem sizes than previously investigated. Thus, our findings advance in a significant way the capacity to solve this important class of problems.en
dc.publisherElsevier-
dc.relation.ispartofEuropean Journal of Operational Researchen
dc.subjectCombinatorial optimization | Metaheuristics | Variable neighborhood search | Vertex weighted k-cardinality tree problemen
dc.titleVariable neighborhood search for the vertex weighted k-cardinality tree problemen
dc.typeArticleen
dc.identifier.doi10.1016/j.ejor.2004.07.061en
dc.identifier.scopus2-s2.0-28044441591en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage74en
dc.relation.lastpage84en
dc.relation.issue1en
dc.relation.volume171en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-3607-6704-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 22, 2024

Page view(s)

23
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.