DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorčević, Vesna | en |
dc.contributor.author | Pavlović, Miroslav | en |
dc.date.accessioned | 2020-05-01T20:13:51Z | - |
dc.date.available | 2020-05-01T20:13:51Z | - |
dc.date.issued | 2008-06-01 | en |
dc.identifier.issn | 0022-247X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1752 | - |
dc.description.abstract | We prove that if f is a quasiregular harmonic function, then there exists a number q ∈ (0, 1) such that | f |q is subharmonic, and use this fact to generalize a result of Rubel, Shields, and Taylor, and Tamrazov, on the moduli of continuity of holomorphic functions. | en |
dc.publisher | Elsevier | - |
dc.relation | MN Project 144010, Serbia | - |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Moduli of continuity | Quasiregular functions | Subharmonic functions | en |
dc.title | Subharmonicity of | f |p for quasiregular harmonic functions, with applications | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jmaa.2007.12.003 | en |
dc.identifier.scopus | 2-s2.0-40349105885 | en |
dc.relation.firstpage | 742 | en |
dc.relation.lastpage | 746 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 342 | en |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-6206-3961 | - |
SCOPUSTM
Citations
22
checked on Apr 2, 2025
Page view(s)
25
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.