DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en |
dc.contributor.author | Todorčević, Vesna | en |
dc.contributor.author | Näkki, Raimo | en |
dc.date.accessioned | 2020-05-01T20:13:50Z | - |
dc.date.available | 2020-05-01T20:13:50Z | - |
dc.date.issued | 2012-02-01 | en |
dc.identifier.issn | 1239-629X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1744 | - |
dc.description.abstract | Let D be a bounded domain in R n, n ≥ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that |f(x) - f(y)| ≤ ω(|x - y|) for all x and y in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We prove, with an additional growth condition on ω, that |f(x) - f(y)| ≤ C maxf{ω(|x - y|); |x - y| α} for all x; y ∈ D, where α = K I(f) 1/(1-n). | en |
dc.publisher | Academia Scientiarum Fennica | - |
dc.relation | Function spaces and their operators | - |
dc.relation.ispartof | Annales Academiae Scientiarum Fennicae Mathematica | en |
dc.subject | Modulus of continuity | Quasiconformal mapping | en |
dc.title | Boundary modulus of continuity and quasiconformal mappings | en |
dc.type | Article | en |
dc.identifier.doi | 10.5186/aasfm.2012.3718 | en |
dc.identifier.scopus | 2-s2.0-84858711416 | en |
dc.relation.firstpage | 107 | en |
dc.relation.lastpage | 118 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 37 | en |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.project.funder | MESTD | - |
crisitem.project.fundingProgram | Basic Research (BR or ON) | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174017 | - |
crisitem.author.orcid | 0000-0001-6206-3961 | - |
SCOPUSTM
Citations
6
checked on Nov 24, 2024
Page view(s)
17
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.