DC FieldValueLanguage
dc.contributor.authorKlén, Rikuen
dc.contributor.authorTodorčević, Vesnaen
dc.contributor.authorVuorinen, Mattiven
dc.date.accessioned2020-05-01T20:13:50Z-
dc.date.available2020-05-01T20:13:50Z-
dc.date.issued2017-11-15en
dc.identifier.issn0022-247Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1737-
dc.description.abstractQuasiconformal homeomorphisms of the whole space Rn, onto itself normalized at one or two points are studied. In particular, the stability theory, the case when the maximal dilatation tends to 1, is in the focus. Our main result provides a spatial analogue of a classical result due to Teichmüller. Unlike Teichmüller's result, our bounds are explicit. Explicit bounds are based on two sharp well-known distortion results: the quasiconformal Schwarz lemma and the bound for linear dilatation. Moreover, Bernoulli type inequalities and asymptotically sharp bounds for special functions involving complete elliptic integrals are applied to simplify the computations. Finally, we discuss the behavior of the quasihyperbolic metric under quasiconformal maps and prove a sharp result for quasiconformal maps of Rn∖{0} onto itself.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.subjectDistance-ratio metric | Quasiconformal mappings | Quasihyperbolic metricen
dc.titleTeichmüller's problem in spaceen
dc.typeArticleen
dc.identifier.doi10.1016/j.jmaa.2017.06.026en
dc.identifier.scopus2-s2.0-85021118127en
dc.relation.firstpage1297en
dc.relation.lastpage1316en
dc.relation.issue2en
dc.relation.volume455en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-6206-3961-
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 20, 2024

Page view(s)

21
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.