DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:49Z-
dc.date.available2020-05-01T20:13:49Z-
dc.date.issued2002-12-01en
dc.identifier.issn0019-5588en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1726-
dc.description.abstractWe investigate the boundedness character, the oscillatory and periodic nature, and the global stability behaviour of the nonnegative solutions of the difference equation xn + 1 = α+βxn - 1/1 + g (xn), where the parameters α and β are nonnegative real numbers and g(x) is a continuous function on [0, ∞), which satisfies some additional conditions.en
dc.publisherIndian National Science Academy-
dc.relation.ispartofIndian Journal of Pure and Applied Mathematicsen
dc.subjectBoundedness | Converge | Difference Equation | Global Stability | Positive Solutionen
dc.titleOn the recursive sequence xn + 1 = α+βxn - 1/1 + g (xn)en
dc.typeArticleen
dc.identifier.scopus2-s2.0-0038575823en
dc.relation.firstpage1767en
dc.relation.lastpage1774en
dc.relation.issue12en
dc.relation.volume33en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 9, 2024

Page view(s)

17
checked on Nov 9, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.