DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:48Z-
dc.date.available2020-05-01T20:13:48Z-
dc.date.issued2003-02-01en
dc.identifier.issn0022-247Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1716-
dc.description.abstractIn this note we prove the following theorem: Suppose 0 < p < ∞ and α > - 1. Then there is a constant C = C(p, m, n, α) such that ∫B u(x) p(1 - x )α dV(x) ≤ C( u(0) p + ∫B ∇u(x) p(1 - x )p+α dV(x)), for all polyharmonic functions u of order m, on the unit ball B ⊂ Rn.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.subjectBergman space | Distortion | Polyharmonic functions | Weight functionen
dc.titleA note on polyharmonic functionsen
dc.typeArticleen
dc.identifier.doi10.1016/S0022-247X(02)00326-8en
dc.identifier.scopus2-s2.0-0037309011en
dc.relation.firstpage243en
dc.relation.lastpage249en
dc.relation.issue1en
dc.relation.volume278en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 24, 2024

Page view(s)

11
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.