DC FieldValueLanguage
dc.contributor.authorKarakostas, Georgeen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:48Z-
dc.date.available2020-05-01T20:13:48Z-
dc.date.issued2004-01-01en
dc.identifier.issn1522-6514en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1710-
dc.description.abstractThe difference equation (Formula presented.) where f : R \ {0} → R is a piecewise nonincreasing continuous function, is investigated for various values of the parameter A. If A > 0, then sufficient conditions are given to ensure that all solutions converge to the (unique) equilibrium of the equation. If A ≤ 0, it is shown that period two solutions exist and their (local) exponential stability and Lyapunov instability are discussed. Moreover in some specific cases it is shown that these periodic solutions are (globally) asymptotically stable. © 2004, Taylor & Francis Group, LLC.en
dc.publisherTaylor & Francis-
dc.relation.ispartofInternational Journal of Phytoremediationen
dc.subject2000 AMS Subject Classifications: 39A11 | Asymptotic properties | Difference equations | Periodic solutions | Stabilityen
dc.titleOn the difference equation x n +1 = Af(x n ) + f(x n −1)en
dc.typeArticleen
dc.identifier.doi10.1080/00036810310001632880en
dc.identifier.scopus2-s2.0-3042696277en
dc.relation.firstpage309en
dc.relation.lastpage323en
dc.relation.issue3en
dc.relation.volume83en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 24, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.