DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karakostas, George | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:48Z | - |
dc.date.available | 2020-05-01T20:13:48Z | - |
dc.date.issued | 2004-01-01 | en |
dc.identifier.issn | 1522-6514 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1710 | - |
dc.description.abstract | The difference equation (Formula presented.) where f : R \ {0} → R is a piecewise nonincreasing continuous function, is investigated for various values of the parameter A. If A > 0, then sufficient conditions are given to ensure that all solutions converge to the (unique) equilibrium of the equation. If A ≤ 0, it is shown that period two solutions exist and their (local) exponential stability and Lyapunov instability are discussed. Moreover in some specific cases it is shown that these periodic solutions are (globally) asymptotically stable. © 2004, Taylor & Francis Group, LLC. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | International Journal of Phytoremediation | en |
dc.subject | 2000 AMS Subject Classifications: 39A11 | Asymptotic properties | Difference equations | Periodic solutions | Stability | en |
dc.title | On the difference equation x n +1 = Af(x n ) + f(x n −1) | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/00036810310001632880 | en |
dc.identifier.scopus | 2-s2.0-3042696277 | en |
dc.relation.firstpage | 309 | en |
dc.relation.lastpage | 323 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 83 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
6
checked on Nov 24, 2024
Page view(s)
14
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.