DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:48Z-
dc.date.available2020-05-01T20:13:48Z-
dc.date.issued2004-01-01en
dc.identifier.issn0232-2064en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1709-
dc.description.abstractLet ℒαp(Un) denote the class of all measurable functions defined on the unit polydisc Un = {z ε Cn |zi| < 1, i = 1, ..., n} such that ∥f∥ℒαp(Un) = ∫U n |f(z)|p π|zj|2) αjdm(zj) < ∞, where αj > - 1, j = 1,..., n, and dm(zj) is the normalized area measure on the unit disk U, H(Un) the class of all holomorphic functions on Un, and let Aαp(Un) = ℒαp(Un) ∩ H(Un) (the weighted Bergman space). In this paper we prove that for p ε (0, ∞), f ε Aαp(Un) if and only if the functions π(1 - |zj|2) ∂|S|f/π jεS ∂zj (χS (1) z1, χS(2)z2,..., χS(n) zn) belong to the space ℒαp(Un) for every S ⊆ {1, 2,..., n}, where χS(·) is the characteristic function of S, |S| is the cardinal number of S, and πjεS ∂z ji = ∂zji...∂zj|S|, where j k ε S, k = 1,..., |S|. This result extends Theorem 22 of Kehe Zhu in Trans. Amer. Math. Soc. 309 (1988) (1), 253-268, when p ε (0, 1). Also in the case p ε [1, ∞), we present a new proof.en
dc.publisherEuropean Mathematical Society-
dc.relation.ispartofZeitschrift fur Analysis und ihre Anwendungen
dc.subjectHolomorphic function | Polydisc | Weighted Bergman spaceen
dc.titleWeighted integrals of holomorphic functions on the polydisc IIen
dc.typeArticleen
dc.identifier.doi10.4171/ZAA/1222en
dc.identifier.scopus2-s2.0-12744259342en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage775en
dc.relation.lastpage782en
dc.relation.issue4en
dc.relation.volume23en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

14
checked on Nov 24, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.