DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:47Z-
dc.date.available2020-05-01T20:13:47Z-
dc.date.issued2004-01-01en
dc.identifier.issn0232-2064en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1702-
dc.description.abstractWe show that a holomorphic function on the unit polydisc Un in Cn belongs to the weighted Bergman space Aαp(Un), when p ∈ (0, 1], if and only if all weighted derivations of order |k| (with positive orders of derivations) belong to the related weighted Lebesgue space Lαp(Un). This result extends Theorem 1.8 by Benke and Chang in [Nagoya Math. J. 159 (2000), 25-43].en
dc.publisherEuropean Mathematical Society-
dc.relation.ispartofZeitschrift fur Analysis und ihre Anwendungen
dc.subjectHolomorphic function | Polydisc | Weighted Bergman spaceen
dc.titleWeighted integrals of holomorphic functions on the polydiscen
dc.typeArticleen
dc.identifier.doi10.4171/ZAA/1211en
dc.identifier.scopus2-s2.0-8744220232en
dc.relation.firstpage577en
dc.relation.lastpage587en
dc.relation.issue3en
dc.relation.volume23en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 24, 2024

Page view(s)

12
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.