DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:47Z | - |
dc.date.available | 2020-05-01T20:13:47Z | - |
dc.date.issued | 2004-01-01 | en |
dc.identifier.issn | 0232-2064 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1702 | - |
dc.description.abstract | We show that a holomorphic function on the unit polydisc Un in Cn belongs to the weighted Bergman space Aαp(Un), when p ∈ (0, 1], if and only if all weighted derivations of order |k| (with positive orders of derivations) belong to the related weighted Lebesgue space Lαp(Un). This result extends Theorem 1.8 by Benke and Chang in [Nagoya Math. J. 159 (2000), 25-43]. | en |
dc.publisher | European Mathematical Society | - |
dc.relation.ispartof | Zeitschrift fur Analysis und ihre Anwendung | en |
dc.subject | Holomorphic function | Polydisc | Weighted Bergman space | en |
dc.title | Weighted integrals of holomorphic functions on the polydisc | en |
dc.type | Article | en |
dc.identifier.doi | 10.4171/ZAA/1211 | en |
dc.identifier.scopus | 2-s2.0-8744220232 | en |
dc.relation.firstpage | 577 | en |
dc.relation.lastpage | 587 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 23 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
19
checked on Apr 3, 2025
Page view(s)
15
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.