DC FieldValueLanguage
dc.contributor.authorSu, You Huien_US
dc.contributor.authorLi, Wan Tongen_US
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2020-05-01T20:13:47Z-
dc.date.available2020-05-01T20:13:47Z-
dc.date.issued2005-01-01-
dc.identifier.issn1023-6198en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1697-
dc.description.abstractIn this paper, we study the global attractivity, the invariant intervals, the periodic and oscillatory character of the difference equation x n+1 =a + bxn/Axn+Bxn-k, n= 0, 1,..., where a, b, A, B are positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x-k,...,x-1,-x0 are nonnegative real numbers such that x-k or x0 or both are positive real numbers. We show that the positive equilibrium of the difference equation is a global attractor. As a corollary, our main result confirms a conjecture proposed by Kulenović et al. (2003) [The dynamics of xn+1 = (α + βxn)/(A + Bxn + Cxn-1) facts and conjectures, Computational Mathematics Applications, 45, 1087-1099].en
dc.publisherTaylor & Francis-
dc.relationNNSF of China (No. 10171040)-
dc.relationNSF of Gansu Province of China (No. ZS011-A25-007-Z)-
dc.relation.ispartofJournal of Difference Equations and Applicationsen
dc.subjectDifference equation | Global attractor | Globally asymptotically stable | Invariant interval | Oscillatoryen
dc.titleDynamics of a higher order nonlinear rational difference equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/10236190512331319352-
dc.identifier.scopus2-s2.0-12344284165-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage133en
dc.relation.lastpage150en
dc.relation.issue2en
dc.relation.volume11en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 19, 2024

Page view(s)

15
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.