DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:46Z | - |
dc.date.available | 2020-05-01T20:13:46Z | - |
dc.date.issued | 2005-01-01 | en |
dc.identifier.issn | 1542-6149 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1692 | - |
dc.description.abstract | Let f be a measurable function defined on the unit polydisc U n in C n and let ω j (z j ), j = 1,...,n, be admissible weights on the unit disk U, with distortion functions ψ j (z j ), ℒ ω→,Np,q (U n ) = {f | || f || ℒω→,N p,q where || f || ℒω→,N p,qq = ∫ [01)n M pq (f, r) ∏ j=1n ω j (r j )dr j , and script A sign ω→,Np,q (U n ) = ℒ ω→,Np,q (U n ) ∩ H(U n ). We prove the following result: if p, q ∈ [1, ∞) and for all j = 1,...,n, ψ j (z j )(∂f/∂z j ) (z) ∈ ℒ ω→,Np,q , then f ∈ script A sign ω→,Np,q and there is a positive constant C = C(p,q,ω j ,n) such that || f || script A signω→,Np,q ≤ C(| f(0) | + ∑ j=1n || ψ j (∂f/∂z j ) || ℒω→,N p,q ). | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Archives of Inequalities and Applications | en |
dc.title | Weighted integrals of holomorphic functions in the unit polydisc | en |
dc.type | Article | en |
dc.identifier.doi | 10.1155/JIA.2005.583 | - |
dc.identifier.scopus | 2-s2.0-33746822734 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 583 | en |
dc.relation.lastpage | 591 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 3 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
3
checked on Nov 23, 2024
Page view(s)
15
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.