DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:46Z-
dc.date.available2020-05-01T20:13:46Z-
dc.date.issued2005-01-01en
dc.identifier.issn1542-6149en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1692-
dc.description.abstractLet f be a measurable function defined on the unit polydisc U n in C n and let ω j (z j ), j = 1,...,n, be admissible weights on the unit disk U, with distortion functions ψ j (z j ), ℒ ω→,Np,q (U n ) = {f | || f || ℒω→,N p,q where || f || ℒω→,N p,qq = ∫ [01)n M pq (f, r) ∏ j=1n ω j (r j )dr j , and script A sign ω→,Np,q (U n ) = ℒ ω→,Np,q (U n ) ∩ H(U n ). We prove the following result: if p, q ∈ [1, ∞) and for all j = 1,...,n, ψ j (z j )(∂f/∂z j ) (z) ∈ ℒ ω→,Np,q , then f ∈ script A sign ω→,Np,q and there is a positive constant C = C(p,q,ω j ,n) such that || f || script A signω→,Np,q ≤ C(| f(0) | + ∑ j=1n || ψ j (∂f/∂z j ) || ℒω→,N p,q ).en
dc.publisherSpringer Link-
dc.relation.ispartofArchives of Inequalities and Applicationsen
dc.titleWeighted integrals of holomorphic functions in the unit polydiscen
dc.typeArticleen
dc.identifier.doi10.1155/JIA.2005.583-
dc.identifier.scopus2-s2.0-33746822734en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage583en
dc.relation.lastpage591en
dc.relation.issue5en
dc.relation.volume3en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

Page view(s)

15
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.