DC FieldValueLanguage
dc.contributor.authorIričanin, Bratislaven
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:45Z-
dc.date.available2020-05-01T20:13:45Z-
dc.date.issued2006-01-01en
dc.identifier.issn1201-3390en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1683-
dc.description.abstractWe show that every positive solution of the system of difference equations x n + 1(1) = 1 + x n(2) /x n - 1(3) , x n + 1(2) = 1 + x n(3) /x n - 1(4) ,..., x n + 1 (k) = 1 + x n(1) /x n - 1(2) , n ε ℕ 0 , where k ε ℕ is fixed, is periodic with period equal to 5k if k ≢ 0 (mod 5), and with period k if k ≡ 0 (mod 5). It is shown also that every positive solution of the system of difference equations x n + 1(1) = 1 + x n(2) + x n - 1(3) /x n - 2(4) , x n + 1(2) = 1 + x n(3) + x n - 1(4) /x n - 2(5) ,..., x n + 1(k) = 1 + x n(1) + x n - 1(2) ,/x n - 2(3) n ε ℕ 0 , is periodic with period equal to 2 3-i k, if GCD(k, 8) = 2 i , i ε {0, 1, 2, 3} (the greatest common divisor of k and 8). Two more systems are considered. These results generalize the well-known periodicity of the corresponding scalar equations.en
dc.publisherWatam Press-
dc.relation.ispartofDynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysisen
dc.subjectPeriodicity | Positive solution | System of difference equationsen
dc.titleSome systems of nonlinear difference equations of higher order with periodic solutionsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-33748547336en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage499en
dc.relation.lastpage507en
dc.relation.issue3-4en
dc.relation.volume13en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

87
checked on Nov 24, 2024

Page view(s)

29
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.