DC FieldValueLanguage
dc.contributor.authorIričanin, Bratislaven
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:45Z-
dc.date.available2020-05-01T20:13:45Z-
dc.date.issued2006-01-01en
dc.identifier.issn1201-3390en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1683-
dc.description.abstractWe show that every positive solution of the system of difference equations x n + 1(1) = 1 + x n(2) /x n - 1(3) , x n + 1(2) = 1 + x n(3) /x n - 1(4) ,..., x n + 1 (k) = 1 + x n(1) /x n - 1(2) , n ε ℕ 0 , where k ε ℕ is fixed, is periodic with period equal to 5k if k ≢ 0 (mod 5), and with period k if k ≡ 0 (mod 5). It is shown also that every positive solution of the system of difference equations x n + 1(1) = 1 + x n(2) + x n - 1(3) /x n - 2(4) , x n + 1(2) = 1 + x n(3) + x n - 1(4) /x n - 2(5) ,..., x n + 1(k) = 1 + x n(1) + x n - 1(2) ,/x n - 2(3) n ε ℕ 0 , is periodic with period equal to 2 3-i k, if GCD(k, 8) = 2 i , i ε {0, 1, 2, 3} (the greatest common divisor of k and 8). Two more systems are considered. These results generalize the well-known periodicity of the corresponding scalar equations.en
dc.publisherWatam Press-
dc.relation.ispartofDynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysisen
dc.subjectPeriodicity | Positive solution | System of difference equationsen
dc.titleSome systems of nonlinear difference equations of higher order with periodic solutionsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-33748547336en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage499en
dc.relation.lastpage507en
dc.relation.issue3-4en
dc.relation.volume13en
dc.description.rankM23-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-

#### SCOPUSTM Citations

86
checked on Jul 22, 2024

#### Page view(s)

109
checked on May 9, 2024