DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:45Z | - |
dc.date.available | 2020-05-01T20:13:45Z | - |
dc.date.issued | 2006-01-01 | en |
dc.identifier.issn | 0304-9914 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1681 | - |
dc.description.abstract | In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for f(z) = Σk=1∞ Pnk (z) (the homogeneous polynomial expansion of f) satisfying nk+1/nk ≥ λ > 1 for all k ε N, to belong to the weighted Bergman space Aαp(B) = {f | ∫B |f(z)|p(1 - |z|2)αdV(z) < ∞, f ε H(B)}. We find a growth estimate for the integral mean (∫∂B|f(rζ) |pdσ(ζ))1/p, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space Hp,q,α(B) and weighted Bergman space on polydisc A α→p(Un) are also given. | en |
dc.publisher | Korean Mathematical Society | - |
dc.relation.ispartof | Journal of the Korean Mathematical Society | en |
dc.subject | Analytic functions | Bergman space | Hadamard gap | Unit ball | en |
dc.title | A generalization of a result of choa on analytic functions with hadamard gaps | en |
dc.type | Conference Paper | en |
dc.identifier.doi | 10.4134/JKMS.2006.43.3.579 | en |
dc.identifier.scopus | 2-s2.0-33646499734 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 579 | en |
dc.relation.lastpage | 591 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 43 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Paper | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
20
checked on Nov 24, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.