DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:45Z-
dc.date.available2020-05-01T20:13:45Z-
dc.date.issued2006-01-01en
dc.identifier.issn0304-9914en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1681-
dc.description.abstractIn this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for f(z) = Σk=1∞ Pnk (z) (the homogeneous polynomial expansion of f) satisfying nk+1/nk ≥ λ > 1 for all k ε N, to belong to the weighted Bergman space Aαp(B) = {f | ∫B |f(z)|p(1 - |z|2)αdV(z) < ∞, f ε H(B)}. We find a growth estimate for the integral mean (∫∂B|f(rζ) |pdσ(ζ))1/p, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space Hp,q,α(B) and weighted Bergman space on polydisc A α→p(Un) are also given.en
dc.publisherKorean Mathematical Society-
dc.relation.ispartofJournal of the Korean Mathematical Societyen
dc.subjectAnalytic functions | Bergman space | Hadamard gap | Unit ballen
dc.titleA generalization of a result of choa on analytic functions with hadamard gapsen
dc.typeConference Paperen
dc.identifier.doi10.4134/JKMS.2006.43.3.579en
dc.identifier.scopus2-s2.0-33646499734en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage579en
dc.relation.lastpage591en
dc.relation.issue3en
dc.relation.volume43en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 24, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.