Authors: | Berenhaut, Kenneth Foley, John Stević, Stevo |
Affiliations: | Mathematical Institute of the Serbian Academy of Sciences and Arts | Title: | Quantitative bounds for the recursive sequence yn + 1 = A + frac(yn, yn - k) | Journal: | Applied Mathematics Letters | Volume: | 19 | Issue: | 9 | First page: | 983 | Last page: | 989 | Issue Date: | 1-Sep-2006 | Rank: | M23 | ISSN: | 0893-9659 | DOI: | 10.1016/j.aml.2005.09.009 | Abstract: | This note provides new quantitative bounds for the recursive equation yn + 1 = A + frac(yn, yn - k), n = 0, 1, ..., where y- k, y- k + 1, ..., y- 1, y0, A ∈ (0, ∞) and k ∈ {2, 3, 4, ...}. Issues regarding exponential convergence of solutions are also considered. In particular, it is shown that exponential convergence holds for all (A, k) for which global asymptotic stability was proven in [R.M. Abu-Saris, R. DeVault, Global stability of yn + 1 = A + frac(yn, yn - k), Appl. Math. Lett. 16 (2) (2003) 173-178]. |
Keywords: | Difference equation | Explicit bounds | Exponential convergence | Stability | Publisher: | Elsevier |
Show full item record
SCOPUSTM
Citations
23
checked on Nov 24, 2024
Page view(s)
20
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.