Authors: Berenhaut, Kenneth
Foley, John
Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Quantitative bounds for the recursive sequence yn + 1 = A + frac(yn, yn - k)
Journal: Applied Mathematics Letters
Volume: 19
Issue: 9
First page: 983
Last page: 989
Issue Date: 1-Sep-2006
Rank: M23
ISSN: 0893-9659
DOI: 10.1016/j.aml.2005.09.009
Abstract: 
This note provides new quantitative bounds for the recursive equation yn + 1 = A + frac(yn, yn - k), n = 0, 1, ..., where y- k, y- k + 1, ..., y- 1, y0, A ∈ (0, ∞) and k ∈ {2, 3, 4, ...}. Issues regarding exponential convergence of solutions are also considered. In particular, it is shown that exponential convergence holds for all (A, k) for which global asymptotic stability was proven in [R.M. Abu-Saris, R. DeVault, Global stability of yn + 1 = A + frac(yn, yn - k), Appl. Math. Lett. 16 (2) (2003) 173-178].
Keywords: Difference equation | Explicit bounds | Exponential convergence | Stability
Publisher: Elsevier

Show full item record

SCOPUSTM   
Citations

23
checked on Nov 24, 2024

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.