DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:44Z-
dc.date.available2020-05-01T20:13:44Z-
dc.date.issued2006-09-01en
dc.identifier.issn1023-6198en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1673-
dc.description.abstractThis paper studies the boundedness, global asymptotic stability and periodicity for solutions of the equation xn = A + (x n-2/xn-1)p, n = 0, 1,..., with p, A ∈ (0, ∞), p ≠ 1 and x-2, x-1 ∈ (0, ∞). It is shown that: (a) all solutions converge to the unique equilibrium, x̄ = A + 1, whenever p ≤ min{1, (A + 1)/2}; (b) all solutions converge to period two solutions whenever (A + 1)/2 < p < 1; and (c) there exist unbounded solutions whenever p > 1. These results complement those for the case p = 1 in A.M. Amleh et al., On the recursive sequence yn+1 = α + (yn-1/yn, Journal of Mathematical Analysis and Applications 233 (1999), 790-798.en
dc.publisherTaylor & Francis-
dc.relation.ispartofJournal of Difference Equations and Applicationsen
dc.subjectBoundedness | Period two solution | Rational difference equation | Stabilityen
dc.titleThe behaviour of the positive solutions of the difference equation x n = A + (xn-2/xn-1)pen
dc.typeArticleen
dc.identifier.doi10.1080/10236190600836377en
dc.identifier.scopus2-s2.0-33748707163en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage909en
dc.relation.lastpage918en
dc.relation.issue9en
dc.relation.volume12en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

66
checked on Nov 23, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.