DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berenhaut, Kenneth | en |
dc.contributor.author | Foley, John | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:44Z | - |
dc.date.available | 2020-05-01T20:13:44Z | - |
dc.date.issued | 2006-12-01 | en |
dc.identifier.issn | 1023-6198 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1671 | - |
dc.description.abstract | This paper studies the boundedness character of the positive solutions of the difference equation. where k, m ε ℕ with gcd(k, m)=1. We prove that if c ≥ 1, then every solution of the equation is bounded, and if c ε (0, 1) and k is even, then there exist positive unbounded solutions. For the case c ε(0, 1) and k odd, we consider the related equation yn = max{-1, yn-k - yn-m} and show that every integer solution is eventually periodic. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | Journal of Difference Equations and Applications | en |
dc.subject | Boundedness | Max difference equation | Periodic solution | Positive solution | en |
dc.title | Boundedness character of positive solutions of a max difference equation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/10236190600949766 | en |
dc.identifier.scopus | 2-s2.0-50849100879 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1193 | en |
dc.relation.lastpage | 1199 | en |
dc.relation.issue | 12 | en |
dc.relation.volume | 12 | en |
dc.description.rank | M21 | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
66
checked on Apr 17, 2025
Page view(s)
27
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.