DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorFoley, Johnen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:44Z-
dc.date.available2020-05-01T20:13:44Z-
dc.date.issued2007-01-01en
dc.identifier.issn0893-9659en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1668-
dc.description.abstractThis paper studies global asymptotic stability for positive solutions to the equation yn = frac(yn - k + yn - m, 1 + yn - k yn - m), n = 0, 1, ..., with y- m, y- m + 1, ..., y- 1 ∈ (0, ∞) and 1 ≤ k < m. The paper includes a discussion of stability for a wide class of symmetric rational difference equations which includes the type studied here as well as several other in the recent literature.en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectRational difference equation | Stability | Symmetryen
dc.titleThe global attractivity of the rational difference equation yn = frac(yn - k + yn - m, 1 + yn - k yn - m)en
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2006.02.022en
dc.identifier.scopus2-s2.0-33750027424en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage54en
dc.relation.lastpage58en
dc.relation.issue1en
dc.relation.volume20en
dc.description.rankM22-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

39
checked on Apr 17, 2025

Page view(s)

24
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.