DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berenhaut, Kenneth | en |
dc.contributor.author | Foley, John | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:44Z | - |
dc.date.available | 2020-05-01T20:13:44Z | - |
dc.date.issued | 2007-01-01 | en |
dc.identifier.issn | 0893-9659 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1668 | - |
dc.description.abstract | This paper studies global asymptotic stability for positive solutions to the equation yn = frac(yn - k + yn - m, 1 + yn - k yn - m), n = 0, 1, ..., with y- m, y- m + 1, ..., y- 1 ∈ (0, ∞) and 1 ≤ k < m. The paper includes a discussion of stability for a wide class of symmetric rational difference equations which includes the type studied here as well as several other in the recent literature. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Applied Mathematics Letters | en |
dc.subject | Rational difference equation | Stability | Symmetry | en |
dc.title | The global attractivity of the rational difference equation yn = frac(yn - k + yn - m, 1 + yn - k yn - m) | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.aml.2006.02.022 | en |
dc.identifier.scopus | 2-s2.0-33750027424 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 54 | en |
dc.relation.lastpage | 58 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 20 | en |
dc.description.rank | M22 | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
39
checked on Apr 17, 2025
Page view(s)
24
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.