DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:43Z | - |
dc.date.available | 2020-05-01T20:13:43Z | - |
dc.date.issued | 2007-01-01 | en |
dc.identifier.issn | 1026-0226 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1663 | - |
dc.description.abstract | We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: xn = f(x n-p1,...,xn-pk,xn-q1,...,xn-qm), n ∈ ℕ0, where pi, i ∈ {1,...,k}, and qj, j ∈ {1,...,m}, are natural numbers such that p1 < p2 <... < pk, q1 < q2 <... < qm and gcd(p1,...,pk,q1,...,qm) = 1, the function f ∈ C[(0,∞)k+m, (α, ∞)], α > 0, is increasing in the first k arguments and decreasing in other m arguments, there is a decreasing function g ∈ C[(α, ∞),(α, ∞)] such that g(g(x)) = x, x ∈ (α,∞), (equation), x ∈ (α, ∞), limx→a+g (x) = +∞, and lim x→+∞g(x) = α. It is proved that if all p i, i ∈{1,...,k}, are even and all qj, j ∈{1,...,m} are odd, every positive solution of the equation converges to (not necessarily prime) a periodic solution of period two, otherwise, every positive solution of the equation converges to a unique positive equilibrium. | en |
dc.publisher | Hindawi | - |
dc.relation.ispartof | Discrete Dynamics in Nature and Society | en |
dc.title | Asymptotic periodicity of a higher-order difference equation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1155/2007/13737 | en |
dc.identifier.scopus | 2-s2.0-38849166591 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.issue | 1 | en |
dc.relation.volume | 2007 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.