DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:43Z-
dc.date.available2020-05-01T20:13:43Z-
dc.date.issued2007-01-01en
dc.identifier.issn1026-0226en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1663-
dc.description.abstractWe give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: xn = f(x n-p1,...,xn-pk,xn-q1,...,xn-qm), n ∈ ℕ0, where pi, i ∈ {1,...,k}, and qj, j ∈ {1,...,m}, are natural numbers such that p1 < p2 <... < pk, q1 < q2 <... < qm and gcd(p1,...,pk,q1,...,qm) = 1, the function f ∈ C[(0,∞)k+m, (α, ∞)], α > 0, is increasing in the first k arguments and decreasing in other m arguments, there is a decreasing function g ∈ C[(α, ∞),(α, ∞)] such that g(g(x)) = x, x ∈ (α,∞), (equation), x ∈ (α, ∞), limx→a+g (x) = +∞, and lim x→+∞g(x) = α. It is proved that if all p i, i ∈{1,...,k}, are even and all qj, j ∈{1,...,m} are odd, every positive solution of the equation converges to (not necessarily prime) a periodic solution of period two, otherwise, every positive solution of the equation converges to a unique positive equilibrium.en
dc.publisherHindawi-
dc.relation.ispartofDiscrete Dynamics in Nature and Societyen
dc.titleAsymptotic periodicity of a higher-order difference equationen
dc.typeArticleen
dc.identifier.doi10.1155/2007/13737en
dc.identifier.scopus2-s2.0-38849166591en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.issue1en
dc.relation.volume2007en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

65
checked on Nov 19, 2024

Page view(s)

26
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.