DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:43Z-
dc.date.available2020-05-01T20:13:43Z-
dc.date.issued2007-01-01en
dc.identifier.issn1027-5487en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1662-
dc.description.abstractLet α > -1, U be the open unit disk in C and denote by H(U) the set of all holomorphic functions on U. Let Cφ be a composition operator induced by an analytic self-map φ of U. Composition operators Cφ on the weighted Hilbert Bergman space A2α (U) = {f ∈ H(U) |∫U | (z)|2(1 - |z|2)αdm(z) < ∞} are considered. We investigate when convergence of sequences (φn) φ, implies the convergence of the induced composition operators. We give a necessary and sufficient condition for a sequence of Hilbert-Schmidt composition operators (Cφn) to converge in Hilbert-Schmidt norm to Cφ, and we obtain a sufficient condition for convergence in operator norm.en
dc.publisherMathematical Society of the Republic of China-
dc.relation.ispartofTaiwanese Journal of Mathematicsen
dc.subjectComposition operator | Hilbert-schmidt operator | Holomorphic function | Weighted bergman spaceen
dc.titleContinuity with respect to symbols of composition operators on the weighted Bergman spaceen
dc.typeArticleen
dc.identifier.doi10.11650/twjm/1500404811en
dc.identifier.scopus2-s2.0-58149529029en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1177en
dc.relation.lastpage1188en
dc.relation.issue4en
dc.relation.volume11en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 23, 2024

Page view(s)

10
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.