DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:43Z-
dc.date.available2020-05-01T20:13:43Z-
dc.date.issued2007-02-15en
dc.identifier.issn0022-247Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1661-
dc.description.abstractThis paper studies global asymptotic stability for positive solutions to the equation{Mathematical expression} with y- m, y- m + 1, ..., y-1 ∈ (0, ∞) and 1 ≤ k < l < m. The paper also includes a listing of possible semi-cycle structures for various (k, l, m). The results generalize several others in the recent literature.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.subjectRational difference equation | Stability | Symmetryen
dc.titleThe global attractivity of a higher order rational difference equationen
dc.typeArticleen
dc.identifier.doi10.1016/j.jmaa.2006.02.087en
dc.identifier.scopus2-s2.0-33750606745en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage940en
dc.relation.lastpage944en
dc.relation.issue2en
dc.relation.volume326en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.