DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berenhaut, Kenneth | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:43Z | - |
dc.date.available | 2020-05-01T20:13:43Z | - |
dc.date.issued | 2007-02-15 | en |
dc.identifier.issn | 0022-247X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1661 | - |
dc.description.abstract | This paper studies global asymptotic stability for positive solutions to the equation{Mathematical expression} with y- m, y- m + 1, ..., y-1 ∈ (0, ∞) and 1 ≤ k < l < m. The paper also includes a listing of possible semi-cycle structures for various (k, l, m). The results generalize several others in the recent literature. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Rational difference equation | Stability | Symmetry | en |
dc.title | The global attractivity of a higher order rational difference equation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jmaa.2006.02.087 | en |
dc.identifier.scopus | 2-s2.0-33750606745 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 940 | en |
dc.relation.lastpage | 944 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 326 | en |
dc.description.rank | M21 | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
33
checked on Apr 17, 2025
Page view(s)
21
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.