DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berenhaut, Kenneth | en |
dc.contributor.author | Foley, John | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:43Z | - |
dc.date.available | 2020-05-01T20:13:43Z | - |
dc.date.issued | 2007-04-01 | en |
dc.identifier.issn | 0002-9939 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1659 | - |
dc.description.abstract | This paper studies the behavior of positive solutions of the recursive equation yn = 1+ yn-k/yn-m, n = 0, 1, 2,., with y-s, y-s+1,.,y-1ε (0,ε) and k,m. {1, 2, 3, 4,.}, where s = max{k,m}. We prove that if gcd(k,m) = 1, with k odd, then yn tends to 2, exponentially. When combined with a recent result of E. A. Grove and G. Ladas (Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004)), this answers the question when y = 2 is a global attractor. | en |
dc.publisher | American Mathematical Society | - |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.title | The global attractivity of the rational difference equation yn = 1+ yn-k/yn-m | en |
dc.type | Article | en |
dc.identifier.doi | 10.1090/S0002-9939-06-08580-7 | en |
dc.identifier.scopus | 2-s2.0-33947707729 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1133 | en |
dc.relation.lastpage | 1140 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 135 | en |
dc.description.rank | M22 | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
58
checked on Apr 16, 2025
Page view(s)
21
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.