DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorFoley, Johnen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:43Z-
dc.date.available2020-05-01T20:13:43Z-
dc.date.issued2007-04-01en
dc.identifier.issn0002-9939en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1659-
dc.description.abstractThis paper studies the behavior of positive solutions of the recursive equation yn = 1+ yn-k/yn-m, n = 0, 1, 2,., with y-s, y-s+1,.,y-1ε (0,ε) and k,m. {1, 2, 3, 4,.}, where s = max{k,m}. We prove that if gcd(k,m) = 1, with k odd, then yn tends to 2, exponentially. When combined with a recent result of E. A. Grove and G. Ladas (Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004)), this answers the question when y = 2 is a global attractor.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.titleThe global attractivity of the rational difference equation yn = 1+ yn-k/yn-men
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9939-06-08580-7en
dc.identifier.scopus2-s2.0-33947707729en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1133en
dc.relation.lastpage1140en
dc.relation.issue4en
dc.relation.volume135en
dc.description.rankM22-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

58
checked on Apr 16, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.