DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:42Z | - |
dc.date.available | 2020-05-01T20:13:42Z | - |
dc.date.issued | 2007-05-01 | en |
dc.identifier.issn | 1598-5865 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1652 | - |
dc.description.abstract | In this paper we investigate the boundedness character of the positive solutions of the rational difference equation of the form xn+1 = a 0 + ∑ j=1k a jx n-j+1/b 0 + ∑ j=1k a jx n-j+1. n= 0,1,... where k ∈ N, and a j, b j, j = 0, 1,... ,k, are nonnegative numbers such that b 0 + + ∑ j=1k a jx n-j+1 > 0 for every n ∈ N∪{0}. In passing we confirm several conjectures recently posed in the paper: E. Camouzis, G. Ladas and E. P. Quinn, On third order rational difference equations (part 6), J. Differ. Equations Appl. 11(8) (2005), 759-777. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Journal of Applied Mathematics and Computing | en |
dc.subject | Boundedness | Difference equation | Global attractivity | Positive solutions | en |
dc.title | On the rational (k + 1, k + 1)-type difference equation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/BF02832318 | en |
dc.identifier.scopus | 2-s2.0-34249819401 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 295 | en |
dc.relation.lastpage | 303 | en |
dc.relation.issue | 1-2 | en |
dc.relation.volume | 24 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.