DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:42Z | - |
dc.date.available | 2020-05-01T20:13:42Z | - |
dc.date.issued | 2007-05-01 | en |
dc.identifier.issn | 0037-4466 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1651 | - |
dc.description.abstract | We study the following integral type operator equation presented in the space of analytic functions on the unit polydisk U n in the complex vector space ℂn. We show that the operator is bounded in the mixed norm space [Figure not available: see fulltext.], with p, q [1, ∞) and α = (α1, ⋯, αn), such that αj > -1, for every j = 1, ⋯, n, if and only if supz∈Un ∏j=1n (1 - |z j|)|g(z)| < ∞. Also, we prove that the operator is compact if and only if limz→∂Un ∏ j=1n (1 - |zj|)| g(z)| = 0. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Siberian Mathematical Journal | en |
dc.subject | Analytic function | Boundedness | Compactness | Integral operator | Mixed norm space | Polydisk | en |
dc.title | Boundedness and compactness of an integral operator in a mixed norm space on the polydisk | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s11202-007-0058-5 | en |
dc.identifier.scopus | 2-s2.0-34347222542 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 559 | en |
dc.relation.lastpage | 569 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 48 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
37
checked on Nov 23, 2024
Page view(s)
12
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.