DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:41Z-
dc.date.available2020-05-01T20:13:41Z-
dc.date.issued2007-07-01en
dc.identifier.issn0163-0563en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1647-
dc.description.abstractLet double struk D signn be the unit polydisc of ℂn, φ(z) = (φ1(z), . . . , φn(z)) be a holomorphic self-map of double struk D sign n, and φ(z) a holomorphic function on double struk D sign n. Let H∞(double struk D signn) be the space of all bounded holomorphic functions on double struk D signn and script B sign(double struk D signn) the -Bloch space. Necessary and sufficient conditions for the weighted composition operator φC φ induced by φ(z) and φ(z) to be bounded and compact from script B sign(double struk D signn) to H∞(double struk D signn) are given in this paper. One of our results corrects and extends Theorem 1 in the paper by S. Ohno, Weighted composition operators between H∞ and the Bloch space, Taiwanese J. Math. 2001; 5:555-563.en
dc.publisherTaylor & Francis-
dc.relationNNSF of China (no. 10671115)-
dc.relationSpecialized Research Fund for the doctoral program of Higher Education (no. 20060560002)-
dc.relationNSF of Guangdong Province (no. 06105648)-
dc.relation.ispartofNumerical Functional Analysis and Optimizationen
dc.subjectBloch space | Boundedness | Compactness | Weighted composition operatoren
dc.titleWeighted composition operators from α-Bloch space to H ∞ on the polydiscen
dc.typeArticleen
dc.identifier.doi10.1080/01630560701493222en
dc.identifier.scopus2-s2.0-34547952071en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage911en
dc.relation.lastpage925en
dc.relation.issue7-8en
dc.relation.volume28en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

75
checked on Nov 24, 2024

Page view(s)

15
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.