DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:40Z-
dc.date.available2020-05-01T20:13:40Z-
dc.date.issued2007-12-18en
dc.identifier.issn0232-2064en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1633-
dc.description.abstractIn this note we prove that a harmonic function u on the unit ball B ⊂ ℝn belongs to the harmonic mixed norm space Asp,q (B), when p, q ∈ (0, ∞] and s > 0, if and only if all weighted tangential derivatives of order k (with positive orders of derivatives) belong to the related weighted Lebesgue mixed norm space sp'q(B). Our proof of the result for the case q ∈(0, 1) and k is odd, corrects the corresponding one in the paper: G. Ren and U. Kähler, Hardy-Littlewood inequalities and Qp-spaces, Z. Anal. Anwendungen 24 (2005), 375 - 388.en
dc.publisherEuropean Mathematical Society-
dc.relation.ispartofZeitschrift fur Analysis und ihre Anwendungen
dc.subjectHarmonic function | HL-property | Mixed norm space | Unit ballen
dc.titleOn Ren-Kähler's paper "Hardy-Littlewood inequalities and Q p-spaces" (Zeitchrift für Analysis und ihre Anwendungen (2005) 24 (375 - 388))en
dc.typeArticleen
dc.identifier.doi10.4171/ZAA/1337-
dc.identifier.scopus2-s2.0-37049014268en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage473en
dc.relation.lastpage480en
dc.relation.issue4en
dc.relation.volume26en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

11
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.