DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:39Z-
dc.date.available2020-05-01T20:13:39Z-
dc.date.issued2008-01-01en
dc.identifier.issn0304-9914en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1628-
dc.description.abstractWe generalize several integral inequalities for analytic functions on the open unit polydisc Un = {z ∈ ℂn ||zj| < 1, j = 1,...,n}. It is shown that if a holomorphic function on U n belongs to the mixed norm space Aω→p,q(Un), where ωj(·) j=1,...,n, are admissible weights, then all weighted derivations of order |k| (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q ∈ [1, ∞) and when the order is equal to one. The equivalence of these conditions is given for all p, q ∈ (0, ∞) if ωj(zj) = (1 - |z j|2)αj, αj > -1, j = 1,... ,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.en
dc.publisherKorean Mathematical Society-
dc.relation.ispartofJournal of the Korean Mathematical Societyen
dc.subjectAdmissible weight | Holomorphic function | Mixed norm space | Polydisc | Weighted derivationsen
dc.titleHolomorphic functions on the mixed norm spaces on the polydiscen
dc.typeArticleen
dc.identifier.doi10.4134/JKMS.2008.45.1.063en
dc.identifier.scopus2-s2.0-38349018850en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage63en
dc.relation.lastpage78en
dc.relation.issue1en
dc.relation.volume45en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 23, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.