DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Songxiao | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:39Z | - |
dc.date.available | 2020-05-01T20:13:39Z | - |
dc.date.issued | 2008-03-19 | en |
dc.identifier.issn | 0033-3883 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1626 | - |
dc.description.abstract | Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ ℂ n. In this paper we investigate the following integral operators T g(f)(z) = ∫ 01 f(tz)ℜg(tz)dt/t and L g(f)(z) = ∫ 01 Rf(tz)g(tz) dt/t, f ∈ H(B), z ∈ B, where g ∈ H(B) and ℜh(z) = Σ j=1n z j∂h/∂z j(z) is the radial derivative of h. The operator T g can be considered as an extension of the Cesàro operator on the unit disk. The compactness of the operators T g and L g between the general function space F(p, q, s), which includes the Hardy space, Bergman space, Bloch space, and Q p space, and the α-Bloch space are discussed. | en |
dc.publisher | Kossuth Lajos Tudomanyegyetem | - |
dc.relation.ispartof | Publicationes Mathematicae | en |
dc.subject | α-Bloch space | Compact | F(p, q, s) space | Riemann-Stieltjes operator | en |
dc.title | Compactness of Riemann-Stieltjes operators between F(p,q,s) spaces and α-Bloch spaces | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-40749140659 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 111 | en |
dc.relation.lastpage | 128 | en |
dc.relation.issue | 1-2 | en |
dc.relation.volume | 72 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
73
checked on Feb 4, 2025
Page view(s)
22
checked on Jan 31, 2025
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.