DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:39Z-
dc.date.available2020-05-01T20:13:39Z-
dc.date.issued2008-03-19en
dc.identifier.issn0033-3883en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1626-
dc.description.abstractLet H(B) denote the space of all holomorphic functions on the unit ball B ⊂ ℂ n. In this paper we investigate the following integral operators T g(f)(z) = ∫ 01 f(tz)ℜg(tz)dt/t and L g(f)(z) = ∫ 01 Rf(tz)g(tz) dt/t, f ∈ H(B), z ∈ B, where g ∈ H(B) and ℜh(z) = Σ j=1n z j∂h/∂z j(z) is the radial derivative of h. The operator T g can be considered as an extension of the Cesàro operator on the unit disk. The compactness of the operators T g and L g between the general function space F(p, q, s), which includes the Hardy space, Bergman space, Bloch space, and Q p space, and the α-Bloch space are discussed.en
dc.publisherKossuth Lajos Tudomanyegyetem-
dc.relation.ispartofPublicationes Mathematicaeen
dc.subjectα-Bloch space | Compact | F(p, q, s) space | Riemann-Stieltjes operatoren
dc.titleCompactness of Riemann-Stieltjes operators between F(p,q,s) spaces and α-Bloch spacesen
dc.typeArticleen
dc.identifier.scopus2-s2.0-40749140659en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage111en
dc.relation.lastpage128en
dc.relation.issue1-2en
dc.relation.volume72en
dc.description.rankM23-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

72
checked on Jul 22, 2024

Page view(s)

94
checked on May 9, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.