DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.contributor.authorBerenhaut, Kennethen
dc.date.accessioned2020-05-01T20:13:39Z-
dc.date.available2020-05-01T20:13:39Z-
dc.date.issued2008-04-01en
dc.identifier.issn1085-3375en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1625-
dc.description.abstractThis paper studies the boundedness, global asymptotic stability, and periodicity of positive solutions of the equation xn =f( x n-2)/g( x n-1), n∈0, where f,g∈C[(0,∞),(0,∞)]. It is shown that if f and g are nondecreasing, then for every solution of the equation the subsequences {x2n} and {x2n-1} are eventually monotone. For the case when f(x)=α+βx and g satisfies the conditions g(0)=1, g is nondecreasing, and x/g(x) is increasing, we prove that every prime periodic solution of the equation has period equal to one or two. We also investigate the global periodicity of the equation, showing that if all solutions of the equation are periodic with period three, then f(x)=c1/x and g(x)=c2x, for some positive c1 and c2.en
dc.publisherHindawi-
dc.relation.ispartofAbstract and Applied Analysisen
dc.titleThe behavior of positive solutions of a nonlinear second-order difference equationen
dc.typeArticleen
dc.identifier.doi10.1155/2008/653243en
dc.identifier.scopus2-s2.0-41149099569en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.volume2008en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 24, 2024

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.