DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:39Z-
dc.date.available2020-05-01T20:13:39Z-
dc.date.issued2008-04-01en
dc.identifier.issn1660-5446en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1624-
dc.description.abstractIn this paper we investigate harmonic Hardy-Orlicz Hφ(B) and Bergman-Orlicz bφ,α (B) spaces, using an identity of Hardy-Stein type. We also extend the notion of the Lusin property by introducing (φ, α)-Lusin property with respect to a Stoltz domain. The main result in the paper is as follows: Let α ∈ [-1,∞), φ be a nonnegative increasing convex function twice differentiable on (0, ∞), and u a harmonic function on the unit ball B in ℝn. Then the following statements are equivalent: (a) u ∈ bφ,α(B), if α ∈ (-1,∈). u ∈ Hφ(B) if α = -1. (b) ∫B φ″ (|u(x)|)|∇ u(x)|2(1 - |x|)α + 2 dV(x) < + ∞. (c) u has (φ, α)-Lusin property with respect to a Stoltz domain with half-angle β, for any β ∈ (0, π/2 ). (d) u has (φ, α)-Lusin property with respect to a Stoltz domain with half-angle β, for some β ∈ (0, π/2).en
dc.publisherSpringer Link-
dc.relation.ispartofMediterranean Journal of Mathematicsen
dc.subjectBergman-Orlicz space | Hardy-Orlicz space | Harmonic functions | Lusin propertyen
dc.titleA characterization of some classes of harmonic functionsen
dc.typeArticleen
dc.identifier.doi10.1007/s00009-008-0136-3en
dc.identifier.scopus2-s2.0-44649150176en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage61en
dc.relation.lastpage76en
dc.relation.issue1en
dc.relation.volume5en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.