DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:39Z | - |
dc.date.available | 2020-05-01T20:13:39Z | - |
dc.date.issued | 2008-04-01 | en |
dc.identifier.issn | 1660-5446 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1624 | - |
dc.description.abstract | In this paper we investigate harmonic Hardy-Orlicz Hφ(B) and Bergman-Orlicz bφ,α (B) spaces, using an identity of Hardy-Stein type. We also extend the notion of the Lusin property by introducing (φ, α)-Lusin property with respect to a Stoltz domain. The main result in the paper is as follows: Let α ∈ [-1,∞), φ be a nonnegative increasing convex function twice differentiable on (0, ∞), and u a harmonic function on the unit ball B in ℝn. Then the following statements are equivalent: (a) u ∈ bφ,α(B), if α ∈ (-1,∈). u ∈ Hφ(B) if α = -1. (b) ∫B φ″ (|u(x)|)|∇ u(x)|2(1 - |x|)α + 2 dV(x) < + ∞. (c) u has (φ, α)-Lusin property with respect to a Stoltz domain with half-angle β, for any β ∈ (0, π/2 ). (d) u has (φ, α)-Lusin property with respect to a Stoltz domain with half-angle β, for some β ∈ (0, π/2). | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Mediterranean Journal of Mathematics | en |
dc.subject | Bergman-Orlicz space | Hardy-Orlicz space | Harmonic functions | Lusin property | en |
dc.title | A characterization of some classes of harmonic functions | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00009-008-0136-3 | en |
dc.identifier.scopus | 2-s2.0-44649150176 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 61 | en |
dc.relation.lastpage | 76 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 5 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.