DC FieldValueLanguage
dc.contributor.authorHu, Lin Xiaen
dc.contributor.authorLi, Wan Tongen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:38Z-
dc.date.available2020-05-01T20:13:38Z-
dc.date.issued2008-08-01en
dc.identifier.issn1023-6198en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1617-
dc.description.abstractThe main goal of the paper is to confirm Conjecture 9.5.5 stated by Kulenovic and Ladas in Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures (Chapman & Hall/CRC, Boca Raton, FL, 2002). The boundedness, invariant intervals, semicycles and global attractivity of all nonnegative solutions of the equation χn+1 = βχn+γχn-1/A+Bχn+Cχ n-1, n∈ℕ0, are studied, where the parameters β, γ A, B, C ∈ (0, ∞) and the initial conditions χ-1,χ0 ∈ [0, ∞] are such that χ-1 + χ0 > 0. It is shown that if the equation has no prime period-two solutions, then the unique positive equilibrium of the equation is globally asymptotically stable.en
dc.publisherTaylor & Francis-
dc.relationNSFC (No. 10571078)-
dc.relationNSF of Gansu Province of China (No. 3ZS061-A25-001)-
dc.relation.ispartofJournal of Difference Equations and Applicationsen
dc.subjectBoundedness | Difference equation | Global attractor | Globally asymptotically stable | Invariant interval | Semicycleen
dc.titleGlobal asymptotic stability of a second order rational difference equationen
dc.typeArticleen
dc.identifier.doi10.1080/10236190701827945en
dc.identifier.scopus2-s2.0-45849094441en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage779en
dc.relation.lastpage797en
dc.relation.issue8en
dc.relation.volume14en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

27
checked on Nov 19, 2024

Page view(s)

14
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.