DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:38Z | - |
dc.date.available | 2020-05-01T20:13:38Z | - |
dc.date.issued | 2008-09-01 | en |
dc.identifier.issn | 0898-1221 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1614 | - |
dc.description.abstract | In this paper we study the behavior of the solutions of the difference equation xn + 1 = α + frac(xn - 1, xn), n = 0, 1, ... where α is a negative number. Included are results which considerably improve and correct those in the recently published paper: [A.E. Hamza, On the recursive sequence xn + 1 = α + frac(xn - 1, xn), J. Math. Anal. Appl. 322 (2006), 668-674]. We also refute Conjecture 2 in [G. Ladas, Open problems and conjectures, J. Difference. Equ. Appl. 7 (2) (2001), 477-482]. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Computers and Mathematics with Applications | en |
dc.subject | Asymptotics | Convergence to zero | Difference equation | Inclusion theorem | Period three solution | en |
dc.title | On the difference equation xn + 1 = α + frac(xn - 1, xn) | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.camwa.2008.02.017 | en |
dc.identifier.scopus | 2-s2.0-46649098192 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1159 | en |
dc.relation.lastpage | 1171 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 56 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
38
checked on Nov 24, 2024
Page view(s)
12
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.