DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:38Z-
dc.date.available2020-05-01T20:13:38Z-
dc.date.issued2008-09-01en
dc.identifier.issn0081-6906en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1613-
dc.description.abstractIn this paper we show that if (0, 1), the holomorphic Lipschitz space Lalpha;( ) on the unit polydisc is equivalent to the 1 - -Bloch space , as well as to the space consisting of all holomorphic functions f on , continuous on the closure of and satisfying the following condition where e i is an abbreviation for ( ). Moreover, we show that the corresponding norms , and , on these spaces are comparable, that is, there are positive constants C 1, C 2 and C 3 depending only on and n such that for every f holomorphic on .en
dc.publisherAKJournals-
dc.relation.ispartofStudia Scientiarum Mathematicarum Hungaricaen
dc.subjectAnalytic function | Bloch space | Lipschitz type space | Polydiscen
dc.titleOn Lipschitz and α-Bloch spaces on the unit polydiscen
dc.typeArticleen
dc.identifier.doi10.1556/SScMath.2008.1056en
dc.identifier.scopus2-s2.0-52949150064en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage361en
dc.relation.lastpage378en
dc.relation.issue3en
dc.relation.volume45en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.